Predictions of Water Level in Dungun River Terengganu Using Partial Least Squares Regression

نویسندگان

  • Noraini Ibrahim
  • Antoni Wibowo
چکیده

Floods are common phenomenon in the state of Dungun, specifically in Terengganu-Malaysia. Every year, floods affecting biodiversity on this region and also causing property loss of this residential area. The residents in Dungun always suffered from floods since the water overflows to the areas adjoining to the rivers, lakes or dams. The rainfall and evaporation of the area have a large influence on the water level of Dungun River. Therefore, a suitable prediction model is needed to forecast the water level in Dungun River by adopting the ordinary linear regression (OLR) and partial least squares regression (PLSR) based on hydrological data. However, we need to perform cleansing data of the hydrological data since the original data contain inconsistent data. Based on the experiment, it shows that PLSR is more suitable model rather than OLR and the use of the cleansing data gives higher accuracy than the original data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Least Squares Regression Based Variables Selection for Water Level Predictions

Floods are common phenomenon in the state of Kuala Krai, specifically in Kelantan-Malaysia. Every year, floods affecting biodiversity on this region and also causing property loss of this residential area. The residents in Kelantan always suffered from floods since the water overflows to the areas adjoining to the rivers, lakes or dams. Months, average monthly rainfall, temperature, relative hu...

متن کامل

Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression

A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...

متن کامل

Simultaneous spectrophotometric determination of lead, copper and nickel using xylenol orange by partial least squares

A partial least squares (PLS) calibration model was developed for the simultaneous spectrophotometricdetermination of Pb (ΙΙ), Cu (ΙΙ) and Ni (ΙΙ) using xylenol orange as a chromogenic reagent. The parameterscontrolling behavior of the system were investigated and optimum conditions were selected. The calibrationgraphs were linear in the ranges of 0.0–9.091, 0.0–2.719 and 0.0–2.381 ppm for lead...

متن کامل

Determination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares

The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...

متن کامل

Simplex design method in simultaneous spectrophotometric determination of silicate and phosphate in boiler water of power plant and sewage sample by partial least squares

Partial least squares modeling as a powerful multivariate statistical tool was applied tothe simultaneous spectrophotometric determination of silicate and phosphate in aqueoussolutions. The concentration range for silicate and phosphate were 0.02-0.6 and 0.4-3 μg ml-1,respectively. The experimental calibration set was composed with 30 sample solutions using amixture design for two component mix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012